Flytende gjennomsnitt Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet av en tidsserie i Excel. Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter (topper og daler) for enkelt å gjenkjenne trender. 1. Først, ta en titt på vår tidsserie. 2. På Data-fanen klikker du Dataanalyse. Merk: kan ikke finne dataanalyseknappen Klikk her for å laste inn add-in for Analysis ToolPak. 3. Velg Flytt gjennomsnitt og klikk OK. 4. Klikk i feltet Inngangsområde og velg området B2: M2. 5. Klikk i intervallboksen og skriv inn 6. 6. Klikk i feltet Utmatingsområde og velg celle B3. 8. Skriv en graf av disse verdiene. Forklaring: fordi vi angir intervallet til 6, er glidende gjennomsnitt gjennomsnittet for de forrige 5 datapunktene og det nåværende datapunktet. Som et resultat blir tinder og daler utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for de første 5 datapunktene fordi det ikke er nok tidligere datapunkter. 9. Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon: Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, jo nærmere de bevegelige gjennomsnittene er de faktiske datapunktene. Veidende bevegelige gjennomsnitt: Grunnleggende I løpet av årene har teknikere funnet to problemer med det enkle glidende gjennomsnittet. Det første problemet ligger i tidsrammen for det bevegelige gjennomsnittet (MA). De fleste tekniske analytikere tror at prisaksjonen. Åpne eller avsluttende aksjekurs, er ikke nok til å avhenge av riktig forutsi kjøp eller salg av signaler fra MAs crossover-handlingen. For å løse dette problemet, tilordner analytikere nå mer vekt til de nyeste prisdataene ved å bruke det eksponensielt glattede glidende gjennomsnittet (EMA). (Lær mer om å utforske det eksponentielt veide flytende gjennomsnitt.) Et eksempel For eksempel, ved hjelp av en 10-dagers MA, ville en analytiker ta sluttprisen på den tiende dagen og multiplisere dette nummeret med 10, den niende dagen med ni, den åttende dag med åtte og så videre til den første av MA. Når summen er blitt bestemt, vil analytikeren da dele tallet ved tilsetning av multiplikatorene. Hvis du legger til multiplikatorene i 10-dagers MA-eksemplet, er tallet 55. Denne indikatoren er kjent som det lineært vektede glidende gjennomsnittet. (For beslektet lesing, sjekk ut enkle bevegelige gjennomsnitt, gjør trender stående ut.) Mange teknikere er fast troende på det eksponensielt glattede glidende gjennomsnittet (EMA). Denne indikatoren har blitt forklart på så mange forskjellige måter at det forveksler både studenter og investorer. Kanskje den beste forklaringen kommer fra John J. Murphys tekniske analyse av finansmarkedene, (publisert av New York Institute of Finance, 1999): Det eksponentielt glattede glidende gjennomsnittet adresserer begge problemene forbundet med det enkle glidende gjennomsnittet. For det første tilordner det eksponentielt glatte gjennomsnittet en større vekt til nyere data. Derfor er det et vektet glidende gjennomsnitt. Men mens den tilordner mindre betydning for tidligere prisdata, inkluderer den i beregningen alle dataene i instrumentets levetid. I tillegg er brukeren i stand til å justere vektingen for å gi større eller mindre vekt til den siste dagsprisen, som legges til en prosentandel av verdien for tidligere dager. Summen av begge prosentverdiene legger til 100. For eksempel kan den siste dagens pris tildeles en vekt på 10 (.10), som legges til den forrige dagens vekt på 90 (.90). Dette gir den siste dagen 10 av totalvekten. Dette ville være tilsvarer et 20-dagers gjennomsnitt, ved å gi den siste dagens pris en mindre verdi på 5 (.05). Figur 1: Eksponentielt glatt flyttende gjennomsnitt Ovennevnte diagram viser Nasdaq Composite Index fra den første uken i august 2000 til 1. juni 2001. Som du tydeligvis kan se, er EMA, som i dette tilfellet bruker sluttprisdataene over en 9-dagers periode, har bestemte salgssignaler den 8. september (merket med en svart nedpilt). Dette var dagen da indeksen brøt under 4000-nivået. Den andre svarte pilen viser et annet nedre ben som teknikerne faktisk forventer. Nasdaq kunne ikke generere nok volum og interesse fra detaljhandlerne til å bryte 3000 mark. Derefter dør du ned igjen til bunnen ut på 1619.58 på 4. april. Opptrenden av 12. april er markert med en pil. Her stengte indeksen på 1961,46, og teknikere begynte å se institusjonelle fondforvaltere begynner å hente opp gode kjøp som Cisco, Microsoft og noen av energirelaterte problemstillinger. (Les våre relaterte artikler: Flytte gjennomsnittlige konvolutter: Raffinere et populært handelsverktøy og flytte gjennomsnittlig avvisning.) 8.4 Flytte gjennomsnittlige modeller I stedet for å bruke tidligere verdier av prognosevariabelen i en regresjon, bruker en bevegelig gjennomsnittsmodell tidligere prognosefeil i en regresjons - som modell. y c et theta e theta e dots theta e, hvor et er hvit støy. Vi refererer til dette som en MA (q) modell. Selvfølgelig observerer vi ikke verdiene til et, så det er ikke egentlig regresjon i vanlig forstand. Legg merke til at hver verdi av yt kan betraktes som et vektet glidende gjennomsnitt av de siste prognosefeilene. Imidlertid bør bevegelige gjennomsnittsmodeller ikke forveksles med flytende gjennomsnittsutjevning som vi diskuterte i kapittel 6. En flytende gjennomsnittsmodell brukes til å prognostisere fremtidige verdier mens flytende gjennomsnittsutjevning brukes til å estimere utviklingscyklusen til tidligere verdier. Figur 8.6: To eksempler på data fra bevegelige gjennomsnittsmodeller med forskjellige parametere. Venstre: MA (1) med y t 20e t 0.8e t-1. Høyre: MA (2) med y t e t-e t-1 0.8e t-2. I begge tilfeller er e t normalt distribuert hvit støy med gjennomsnittlig null og varians en. Figur 8.6 viser noen data fra en MA (1) modell og en MA (2) modell. Endring av parametrene theta1, prikker, thetaq resulterer i forskjellige tidsseriemønstre. Som med autoregressive modeller, vil variansen av feilbegrepet et bare endre omfanget av serien, ikke mønstrene. Det er mulig å skrive en stasjonær AR (p) modell som en MA (infty) modell. For eksempel ved bruk av gjentatt substitusjon, kan vi demonstrere dette for en AR (1) - modell: begynnelse og forsterkning og forsterkning (phi1y e) og forsterkning av phi1 og et phi13y phi12e phi1e og amplitud ende Forutsatt -1 lt phi1 lt 1, verdien av phi1k blir mindre etter hvert som k blir større. Så til slutt får vi yt og phi1 phi12 e phi13 e cdots, en MA (infty) prosess. Det motsatte resultatet holder seg dersom vi legger inn noen begrensninger på MA parametrene. Så kalles MA-modellen inverterbar. Det vil si at vi kan skrive en omvendt MA (q) prosess som en AR (infty) prosess. Invertible modeller er ikke bare å gjøre det mulig for oss å konvertere fra MA-modeller til AR-modeller. De har også noen matematiske egenskaper som gjør dem enklere å bruke i praksis. Invertibilitetsbegrensningene ligner stasjonære begrensninger. For en MA (1) modell: -1lttheta1lt1. For en MA (2) modell: -1lttheta2lt1, theta2theta1 gt-1, theta1-teteta1 1. Mer kompliserte forhold holder for qge3. Igjen vil R ta vare på disse begrensningene når vi estimerer modellene.
No comments:
Post a Comment